ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ЦЕНТР ДЛЯ ОДАРЕННЫХ ДЕТЕЙ «ПОИСК»

РЕКОМЕНДОВАНА:

педагогическим советом

Протокол № <u>7</u> от «<u>4</u> » <u>ащые</u> 2025 г.

утверждаю:

Заведующая филиалом

Т.В. Ларина

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«ЭНЕРДЖИКВАНТУМ»

Возраст обучающихся:

11-17 лет

Объем программы:

272 часа

Срок освоения:

2 год

Форма обучения:

очная

Авторы программы:

Гринько

Ангелина

Дмитриевна,

педагог

дополнительного образования ДТ Кванториум

Михайловск, 2025

ОГЛАВЛЕНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	2
1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОГРАММЫ	3
1.1. Направленность программы	3
1.2. Адресат программы	3
1.3. Актуальность программы	3
1.4. Новизна программы	4
1.5. Объем и срок освоения программы	4
1.6. Цели и задачи программы	4
1.7. Планируемые результаты освоения программы	5
2. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦ ПРОГРАММЫ	
2.1. Язык реализации программы	
2.2. Форма обучения:	
2.3. Особенности реализации программы	
2.4. Условия набора и формирования групп	
2.5. Формы организации и проведение занятий	
РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «Энерджиквантум»	
УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН КУРСА	
СОДЕРЖАНИЕ КУРСА «Энерджиквантум»	
ОЦЕНОЧНЫЕ МАТЕРИАЛЫ	22
МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ	23
КАДРОВОЕ ОБЕСПЕЧЕНИЕ	
ОПИСАНИЕ МАТЕРИАЛЬНО - ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО КУРСУ	
УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНІ	
ПРОГРАММЫ	
1. Перечень литературы, необходимой для освоения программы	
1.1. Перечень литературы, использованной при написании программы	
1.2. Перечень литературы, рекомендованной обучающимся	
1.3. Перечень литературы, рекомендованной родителям	
1.4. Перечень раздаточного материала	
2.1. Перечень ресурсов информационно-телекоммуникационной сети	– /
«Интернет», необходимых для освоения программы	28

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Поиску эффективного применения альтернативных источников энергии в настоящее время уделяется большое внимание как российских, так и зарубежных ученых. Повышенный интерес связан с проблемой ограниченности природных ресурсов традиционных источников энергии: нефти, газа, угля и т.д. Помимо иссякаемости, традиционная энергетика наносит вред экологии планеты из-за выбросов парниковых газов в атмосферу, а использование «зеленой» энергии позволит снизить риски.

В настоящее время доля энергетики в области возобновляемых ресурсов в мире превысила 20% и составляет более 850 ГВт, однако по прогнозам к 2020 году совокупная установленная суммарная мощность установок от альтернативных источников превысит 2500 ГВт.

В России этот показатель не превышает 2%, но прогнозируется увеличение доли ВИЭ в российском энергобалансе к 2030 году до 11%. Развитие альтернативной энергетики в России тормозит как высокая стоимость установок, так и отсутствие соответствующего законодательства в области микрогенерации, позволяющей сделать добычу экоэнергии не только полезной, но и выгодной.

квалифицированного Формирование национально-ориентированного кадрового потенциала в области энергетики является одним из приоритетных направлений образования в России. Актуальность настоящей программы обусловлена необходимостью повышения интереса подрастающего поколения в ЭТОМ направлении. Возможным ЭТО стало cзапуском новой формы дополнительного образования учащейся молодежи - сети детских технопарков «Кванториум», уникальность которого заключается в содействии ускоренному техническому развитию детей и реализации научно-технического потенциала российской эффективных моделей молодежи, посредством внедрения образования.

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОГРАММЫ

1.1. Направленность программы

Программа имеет практическую и прикладную направленность, что позволяет осуществить связь содержания и методики обучения предмета с практикой.

1.2. Адресат программы

Программа адресована обучающимся от 11 до 17 лет.

Программа предназначена для одаренных школьников 5-11 классов, проявляющих повышенный интерес к информатике, математике, анализу данных.

Возрастная категория обучающихся – разновозрастная.

Необходимы базовые знания по следующим школьным предметам: информатика, физика.

Наличие определенной физической и практической подготовки для изучения учебной программы не требуется.

1.3. Актуальность программы

Формирование квалифицированного национально-ориентированного кадрового потенциала в области энергетики является одним из приоритетных направлений образования в России. Актуальность настоящей программы обусловлена необходимостью повышения интереса подрастающего поколения в ЭТОМ направлении. Возможным ЭТО стало cзапуском новой дополнительного образования учащейся молодежи - сети детских технопарков «Кванториум», уникальность которого заключается в содействии ускоренному техническому развитию детей и реализации научно-технического потенциала российской молодежи, посредством внедрения эффективных моделей образования. В результате освоения программы обучающиеся будут способны применять базовые знания для решения проектных и практических задач.

1.4. Новизна программы

Новизна дополнительной общеобразовательной программы «Энерджиквантум» заключена в:

- применении интерактивных методов взаимодействия обучающихся и наставника;
- отклонении от изучения «сухой» теории и отсутствия связи с практической деятельностью;
- освоении обучающимися базовых знаний по физике;
- использовании программного обеспечения для моделирования исследуемых процессов.

Уровень освоения программы – базовый.

1.5. Объем и срок освоения программы

Объем программы – 272 часов.

Срок реализации программы – 2 года.

1.6. Цели и задачи программы

Цель программы:

Повышение заинтересованности обучающихся исследовательской, инженерно-конструкторской и проектной деятельностью в области энергетики посредством изучения особенностей энергетической системы России и Ставропольского края, традиционных и нетрадиционных (возобновляемых) источников энергии через формирование ряда общих и надпрофессинальных компетенций.

Задачи программы

1. Обучающие:

На основе имеющиеся у обучающихся знаний и умений углубить и систематизировать знания в области альтернативной энергетики:

— сформировать систему общих понятий в сфере энергетики,

электроники, схемотехники;

- обучить элементам системного мышления;
- изучить особенности работы и основные характеристики электрических машин постоянного и переменного тока, солнечных панелей, ветрогенератора, водородного топливного элемента, суперконденсатора, элементов «Умного дома», микроконтроллера Arduino.

2. Развивающие:

Обучающиеся в процессе изучения образовательной программы получат возможность:

- развивать навыки сетевого общения и коммуникации в сети Интернет, поиска и работы с информацией, обеспечения безопасности цифровых устройств и аккаунтов и осуществления сетевых покупок;
- развивать умение сравнивать, выявлять сходство и различие, анализировать и делать выводы;
- совершенствовать стремление школьников к познанию, расширению кругозора, информированности в рамках предметной области;
- способствовать развитию коммуникативных навыков,
 психологической совместимости и адаптации в учебной группе.

3. Воспитательные:

В процессе изучения образовательной программы обучающиеся смогут:

- воспитывать культуру общения и поведения в сетевом пространстве;
- содействовать выработке целесообразных ценностных ориентаций, потребностей и мотивов поведения школьника в сфере компьютерного обеспечения.
 - 1.7. Планируемые результаты освоения программы
 - 1. Предметные результаты:
 - сформированы основные понятия в области энергетики;
- сформированы знания в области компьютерной грамотности учащихся;

		—	уме	ение	коррект	СНОГО	пр	оведения	экс	периментов
(лабор	рато	рно-п	рактическ	их работ) и работы	со сп	пециальным	оборудо	ванием.

2. Метапредметные результаты:

- развивается познавательная и творческая активность при работе с лабораторным оборудованием;
 - формулирование и удержание учебной задачи;
 - составлять план и последовательность действий;
- адекватно оценивать правильности или ошибочность выполнения учебной задачи.

3. Личностные:

- умение контролировать процесс и результат учебной проектной деятельности;
 - начальные навыки адаптации в динамично изменяющемся мире;
- формирование способности к эмоциональному восприятию физических объектов, задач, решений, рассуждений.

2. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

2.1. Язык реализации программы

Реализация дополнительной общеобразовательной общеразвивающей программы «Энерджиквантум» осуществляется на государственном языке Российской Федерации.

2.2. Форма обучения:

- очная.
- 2.3. Особенности реализации программы

Программа реализуется по модульному принципу.

2.4. Условия набора и формирования групп

На обучение зачисляются обучающиеся 5-11 классов общеобразовательных организаций Ставропольского края.

Зачисление на обучение по программе осуществляется по результатам конкурсного отбора в соответствии с Правилами приема обучающихся в учреждение дополнительного образования "Центр для одаренных детей "Поиск" на 2025 – 2026 учебный год.

Условия конкурсного отбора гарантируют соблюдение прав обучающихся в области дополнительного образования и обеспечивают зачисление наиболее способных и подготовленных обучающихся к освоению программы.

Условия формирования групп: разновозрастная.

2.5. Формы организации и проведение занятий

Формы организации занятий:

– аудиторные (под непосредственным руководством преподавателя).

Формы проведения занятий:

— теоретические;

- практические;
- лабораторные;
- контрольные.

Формы организации деятельности обучающихся:

Интерактивные проблемные лекции - предполагает наиболее полное вовлечение всех участников лекционного занятия в процесс изучаемого материала, демонстрация слайд-презентации или фрагментов учебных фильмов.

Мозговой штурм - предполагает генерацию идей, которую применяют для выявления проблем или поиска решений

Практикум – предполагает выполнение практических заданий.

Режим занятий.

Очная форма обучения: 5-11 классы -2 урока 2 раз в неделю. Программа реализуется в г. Михайловске.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «Энерджиквантум»

7-11 классы

Курс «Энерджиквантум» предназначен для обучающихся 5-11 классов.

Курс знакомит обучающихся с основными понятиями информационной безопасности, формирует понимание технологий информационной безопасности и умение применять на практике правила кибербезопасности во всех сферах деятельности.

Модуль 1. Базовый модуль.

Модуль 2. Углубленный модуль.

В результате освоения учебного курса обучающийся должен:

знать:

- методы теоретического и экспериментального исследования альтернативных источников;
 - основные классификации альтернативных источников;
- основные технологии и способы эксплуатации альтернативных источников энергии;
- методы определения рисков при использовании альтернативных источников энергии;
- нормы и правила рационального использования природных ресурсов.

обладать навыками:

- продуктивного сотрудничества в работе команды, проявления толерантности и ответственности, адаптации к изменяющимся условиям;
- работы с информационными ресурсами и специальной литературой: сбор информации, обработка, анализ, систематизация, оформление, передача, интерпретация, презентация результатов своей деятельности, применение полученных знаний на практике;
- получения системных базовых знаний об электрическом и магнитном полях, постоянном и переменном токе, основных законах и

элементах электрических цепей, основах электроники и схемотехники, альтернативных (возобновляемых) источниках энергии и основных видах потребителей электроэнергии; принципах получения электроэнергии из энергии ветра, солнца, химической связи (молекул водорода или водного раствора поваренной соли), механического движения, преобразования и хранения электроэнергии;

— чтения, сборки и расчёта простейших электрических цепей и параметров энергетических установок для возобновляемых источников энергии.

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН КУРСА

Базовый модуль. Полный курс программы

20		Количество часов			
№	Наименование кейса, темы	Теория	Практика	Всего	
1	Знакомство. Основы техники безопасности. Измерительные приборы	2	2	4	
2	Командообразование и методы групповой работы. Тренинг	1	1	2	
3	Основы проектной деятельности	1	3	4	
4	Особенности и виды альтернативной энергетики.	2	2	4	
	Кейс 1. Особенности производства, преобразования и потребления электроэнергии	4	10	14	
1	Схемотехника, основные элементы цепи	2	6	8	
	Кейс 2. Солнечное электроснабжение объектов	2	20	22	
1	Тайм-менеджмент. Технология управления временем	2	0	2	
	Кейс 3. Ветряная микрогенерирующая установка	4	10	14	
1	Креативность. Развитие компонентов творческой личности	1	1	2	
	Кейс 4. Особенности работы водородного топливного элемента	2	12	14	
1	Стрессоустойчивость. Методы психорегуляции.	1	1	2	
	Кейс 5. Поиск оптимальной системы энергопитания модели автомобиля.	2	18	20	
1	Эмоциональный интеллект. Эмпатические способности.	2	2	4	
2	Подготовка к итоговой защите проектов.	0	16	16	
3	Защита проектов.	0	2	2	
4	Итоговое занятие. Рефлексия.	2	0	2	
Итог	00	35	101	136	

Углубленный модуль. Полный курс программы

N.C.	П	Количество часов			
№	Наименование кейса, темы	Теория	Практика	Всего	
1	Вводное занятие	0	2	2	

2	Методы ведения проектной деятельности.	2	2	4
3	Знакомство с конкурсами по направлению «Энерджи» для школьников.	2	0	2
	Кейс 1. Хранение энергии, хранение электроэнергии.	2	10	12
1	Scrum метод в управлении проектами.	1	1	2
	Кейс 2. Вывоз снега из города.	2	12	14
1	Тайм-менеджмент.	1	1	2
2	Упражнения по развитию креативности, творческого мышления.	0	2	2
	Кейс 3. Электроснабжение частного домовладения.	2	12	14
1	Экспресс-методы по преодолению психологической напряженности.	0	2	2
	Кейс 4. Умный дом. Ардуино.	4	32	36
2	Кейс 5. Интеграция источников энергоснабжения в городскую среду.	4	12	16
3	Эмоциональный интеллект.	1	1	2
	Кейс 6. Подбор оптимальных параметров работы ВТЭ.	2	10	12
1	Подготовка к итоговой защите проектов	0	10	10
2	Защита проектов.	0	2	2
3	Итоговое занятие. Рефлексия.	2	0	2
Ито	ОГО	25	111	136

СОДЕРЖАНИЕ КУРСА «Энерджиквантум»

Базовый модуль

Кейс 1. Особенности производства, преобразования и потребления электроэнергии.

При работе над кейсом обучающиеся проведут исследовательскую работу и изучат особенности работы электростанций; виды, устройство, принцип работы трансформаторов; классификацию, устройство, принцип работы и область применения генераторов и двигателей постоянного и переменного тока.

Учащиеся должны знать:

— понятия возобновляемой и невозобновляемой энергии.

Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- искать информацию в свободных источниках и структурировать ее;
- умение работать в команде;
- работать в программах по графическому дизайну.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- защита проектов.

Кейс 2. Солнечное электроснабжение объектов.

Данный кейс посвящен знакомству с Солнцем в качестве одного из энергии Земле. Обучающиеся узнают источников на основных характеристиках процессов, происходящих на Солнце, а также о различных вариантах использования той доли солнечной энергии, которая попадает на поверхность Земли. Цель данного кейса - разобрать понятие потребителя электроэнергии, понятие источника электроэнергии. Сделать расчёт необходимой площади солнечных панелей для электроснабжения фермы.

Учащиеся должны знать:

- понятия фотовольтарики;
- виды, устройство, принцип работы трансформаторов;
- способы хранения и преобразования солнечной энергии.

Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- анализировать полученные данные;
- читать и составлять схемы, диаграммы, графики;
- умение работать в команде;
- объективно оценивать результаты своей работы.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- защита проектов.

Кейс 3. Ветряная микрогенерирующая установка.

В данном кейсе обучающиеся познакомятся с одним из устройств для получения электроэнергии - ветрогенератором. Обучающиеся будут проводить поиск наиболее эффективной конструкции ветрогенератора для условий Ставропольского края, варьируя различные параметры, например, форму лопастей и угол, под которым они расположены. Также у них будет возможность придумать и испытать свой тип ветрогенератора и лопастей, которые они смогут дополнительно изготовить в Hi-tech цехе.

Учащиеся должны знать:

- основные механизмы возникновения ветра;
- устройство ветрогенератора;
- понятие автономной системы ветрогенерации;
- критерии эффективной модели ветряной электростанции;

Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- работать в команде;
- разрабатывать техническое задание проекта;
- работать с ветрогенератором, анемометром и мультиметром.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- защита проектов.

Кейс 4. Особенности работы водородного топливного элемента

В ходе решения кейса, учащиеся знакомятся с областью внутри которой находится затрагиваемая в кейсе проблема, обсуждают её между собой, определяют основные направления работы для решения проблемы и предлагают варианты и способы решения конструирования устройств, двигатель которых (например, подводной лодки) работает от водородного топлива.

Учащиеся должны знать:

- основные механизмы возникновения ветра;
- устройство ветрогенератора;
- понятие автономной системы ветрогенерации;
- критерии эффективной модели ветряной электростанции;

Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- работать в команде;
- разрабатывать техническое задание проекта;
- работать с ветрогенератором, анемометром и мультиметром.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- защита проектов.

Кейс 5. Поиск оптимальной системы энергоснабжения модели автомобиля.

В данном кейсе обучающиеся продолжат знакомство с альтернативными источниками энергии, а именно с двумя топливными элементами, работающими на растворе поваренной соли или на водороде. Помимо использования топливных элементов обучающиеся научатся методом электролиза получать водород - топливо для таких систем. Обучающиеся расширят свои познания о способах хранения электроэнергии и познакомятся с процессом преобразования механической энергии движения в электроэнергию.

Учащиеся должны знать:

- понятия электролиз, протонообменная мембрана;
- применение водородных топливных элементов;
- плюсы и минусы получения электричества от энергии соленой воды и водорода;
- характеристики и параметры водородного топливного элемента: площадь пластин, расстояние между пластинами.

Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- работать в команде;
- работать с солевым и водородным топливными элементами,
- работать с электролизером малой мощности;
- работать на лабораторном оборудовании.

Формы занятий, используемые при изучении данного кейса:

лекционная;

- групповая (командная) работа;
- защита проектов.

Углубленный модуль.

Кейс 1. Хранение энергии, хранение электроэнергии

Решая данный кейс обучающиеся познакомятся с методами накопления и транспортировки энергии, с проблемами, которые необходимо было решать инженерам и изобретателям в ходе развития технологического уровня цивилизации. Познакомятся с проблемами, которые стоят перед современными учёными, занимающимися разработкой новых накопителей электроэнергии.

Учащиеся должны знать:

- способы преобразования энергии в электрическую;
- способы транспортировки электроэнергии;
- современные накопительные приборы для электроэнергии.

Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- ориентироваться во временном периоде изобретения различных способов хранения энергии;
- выделять цепочку преобразования различных видов энергии в ходе накопления и транспортировки.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- защита проектов.

Кейс 2. Вывоз снега из города

При работе над данным кейсом обучающиеся смогут лучше понять особенности термодинамических процессов и способов применения полученных школьных знаний к конкретной проблеме.

Учащиеся должны знать:

- два способа утилизации снега: расплавление и вывоз на специальную площадку;
- остоинства и недостатки метода вывоза снега на специальную площадку;
- достоинства и недостатки метода расплавления в снегоплавильных установках;
 - понятие снежный покров и его характеристики;
 - понятие удельная теплоёмкость вещества;
 - методику расчёта затрат на плавление.

Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- проводить расчеты затрат энергии на плавление снега.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- защита проектов.

Кейс 3. Электроснабжение частного домовладения.

Данный кейс посвящен пониманию основ электроснабжения объектов, способов распределения и расчета нагрузки, особенностям выбора осветительных приборов и их размещения. У обучающихся будет возможность самостоятельно провести освещение в макет построенной части домовладения с применением низковольтных источников.

Учащиеся должны знать:

способы расчета потребления электроэнергии;

- устройство электрической схемы частного домовладения;
- основные понятия схемотехники;
- критерии эффективной электроснабжения домовладения.

Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- читать и составлять электрические схемы и чертежи;
- работать в команде;
- работать с проводами, паяльником, мини-лампочками и элементами электрических цепей, выполнять их монтаж.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- защита проектов.

Кейс 4. Умный дом. Ардуино.

Исследовательский кейс посвящен изучению инновационных технологий «Умный дом» и «Доступная среда», особенностям их использования и возможности самостоятельного программирования «умной» среды с использованием микроконтроллера Arduino.

Учащиеся должны знать:

- способы расчета потребления электроэнергии;
- элементы электрической цепи: резистор, конденсатор, ключ, лампа накаливания;
 - понятие принципиальная электрическая схема;
 - понятия напряжение, сила тока, сопротивление;
 - закон Ома для участка цепи;
- последовательное, параллельное и смешанное соединение проводников.
 - Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- анализировать полученные данные;
- работать со стендом «Умный дом»;
- публично представлять информацию.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- защита проектов.

Кейс 5. Электрификация комплексных объектов

На примере городской среды, обучающиеся рассмотрят способы интеграции дополнительных источников электроэнергии в городскую инфраструктуру.

Учащиеся должны знать:

- способы транспортирования электроэнергии;
- типы потребителей электроэнергии;
- понятие переменного и постоянного тока;
- понятие напряжения и силы тока;
- понятие частоты переменного тока.
- Учащиеся должны уметь:
- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- читать и составлять электрические схемы и чертежи;
- работать в команде;
- публично представлять информацию;
- работать с программами по созданию презентаций (MS PowerPoint, prezi.com);
 - объективно оценивать результаты своей работы.

Формы занятий, используемые при изучении данного кейса: лекционная; групповая (командная) работа; защита проектов. **Кейс 6.** Подбор оптимальных параметров работы ВТЭ Кейс направлен на подробное изучение работы водородного топливного элемента с целью подбора оптимального режима работы подающего и протравливающего клапана под определённого потребителя тока. Практическая работа в кейсе выполняется на стенде по водородной энергетике. Учащиеся должны знать: способы транспортирования электроэнергии; понятие электролиза воды; устройство ВТЭ; методы расчёта вольт-амперных характеристик потребителя; принцип работы измерительных приборов (вольтметр, амперметр); понятие принципиальная электрическая схема; понятия напряжение, сила тока, сопротивление; методику распределения и расчета нагрузки. Учащиеся должны уметь: генерировать идеи; слушать и слышать собеседника; аргументированно отстаивать свою точку зрения; читать и составлять электрические схемы и чертежи; работать в команде;

— публично представлять информацию;

— работать с программами по созданию презентаций (MS PowerPoint, prezi.com);

— объективно оценивать результаты своей работы.

Формы занятий, используемые при изучении данного кейса:

лекционная;

- групповая (командная) работа;
- защита проектов.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Во время проведения курса предполагается текущий, промежуточный и итоговый контроль. Промежуточная аттестация обучающихся по данной программе проводится в форме защиты, практических работ по каждой теме. Кроме того, проверка результатов освоения программы осуществляется постоянно: после изучения каждого раздела программы, учащиеся контрольные защиты и лабораторные работы.

Во время проведения курса предполагается промежуточный и итоговый контроль.

Промежуточный контроль проводится в конце каждого кейса.

Форма: Защита проектов.

Итоговое оценивание проводится в конце обучения по курсу.

Форма: Итоговая защита проектов.

Оценка	Результат
Высокий	- Сформированы систематическое знание основных понятий,
уровень	- Сформированы знания о безопасном поведении при работе с
	оборудованием.
	- Сформированы умения безопасно работать с информацией,
	анализировать и обобщать полученную информацию.
	- Может самостоятельно оценить свои возможности в выполнении
	задания, учитывая изменения известных способов действия.
	- Проявляет самостоятельность, пунктуальность и ответственность в
	подготовке к занятиям.
Средний	- Знания в области основных понятий альтернативной энергетики не
уровень	систематизированы, хаотичны, частично ошибочные.
	- Навыки безопасного поведения при работе с оборудованием,
	информацией в сети интернет частично имеются. Иногда нужна
	помощь.
	- Проявляет самостоятельность, но при подготовке к занятиям
	требуется внешняя стимуляция.
Низкий	- Знания в области основных понятий альтернативной энергетики
уровень	отсутствуют. Имеющиеся представления часто ошибочны.
	- Учащийся не умеет, не пытается и не испытывает потребности в
	оценке своих действий – ни самостоятельной, ни по просьбе
	педагога.
	- Уровень самостоятельности учащихся низкий, при подготовке к
	занятиям требуется постоянная внешняя стимуляция.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

п/п	Название раздела, темы	Формы учебного занятия	Формы, методы, приемы обучения. Педагогические технологии	Материально-техническое оснащение, дидактико- методический материал	Формы контроля/ аттестации
Баз	овый модуль	•	•		•
	Кейс 1. Особенности производства, преобразования и потребления электроэнергии Кейс 2. Солнечное электроснабжение объектов.	частично-поисковая и исследовательская деятельность Комбинированная	информационно-реце птивный, репродуктивный, частично-поисковый, практический. информационно-реце птивный, репродуктивный, репродуктивный, частично-поисковый, практический.	https://ru.wikipedia.org/wiki/ Категория :Электростанции_Став ропольскогокрая https://ru.wikipedia.org/wiki/ Трансформатор https://ru.wikisource.org/wiki/ Правила_устройства электроустановок/Глава 1.2 Научно-популярный канал «Наука 2.0» Фильм «Солнечное электричество»: https://www.youtube.com/watch?v=XhmIncGJOMQ	Защита проекта Защита проекта
	Кейс 3. Ветряная микрогенерирующая установка	лабораторно-практи ческая работа с элементами исследовательской и проектной деятельности	информационно-реце птивный, репродуктивный, частично-поисковый, практический.	Виды ветрогенераторов <a _dxvohehj9k&feature='emb_logo"' href="https://www.youtube.com/watch?time_continue=3&v=">https://www.youtube.com/watch?time_continue=3&v= _DxVOHEhj9k&feature=emb_logo Конструкция ветряной турбины: https://www.youtube.com/watch?v=z1luyyrzFc0 Самый мощный ветрогенератор в мире: https://www.youtube.com/watch?v=Pd9PfmauQvw	Защита проекта

	Кейс 4. Особенности	лабораторно-практи	репродуктивный,	Водород	Защита
	работы водородного	ческая работа с	частично-поисковый,	https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/V	проекта
	топливного элемента	элементами	практический.	ODOROD.html	
		исследовательской и			
		проектной		Водородные топливные	
		деятельности		элементы Как это сделано	
				https://www.youtube.com/watch?v=7PvPzOTuyZ8	
	Кейс 5. Поиск	лабораторно-практи	частично-поисковый,	Электромобили или автомобили с бензиновым	Защита
	оптимальной системы	ческая работа с	практический.	двигателем - что лучше?	проекта
	энергопитания	элементами		https://www.youtube.com/watch?v=Uqo3v60d f4	
	модели автомобиля	проектной		https://ru.wikipedia.org/wiki/Ионистор	
		деятельности		Sebastian Vettel explains F1 KERS and DRS	
				https://www.youtube.com/watch?v=Ml6TywUL9D0	
Угл	убленный модуль				•
	Кейс 1. Хранение	Комбинированная	Информационно-реце	Консервированная энергия, канал наука 2.0	Защита
	энергии, хранение		птивный.	https://www.youtube.com/watch?v=A2wb7A9_UUM	проекта
	электроэнергии.		Репродуктивный.	Из чего состоит свинцовый аккумулятор:	
			Частично-поисковый.	https://www.youtube.com/watch?v=0jbnDTRtywE	
	Кейс 2. Вывоз снега	V	Практический	https://www.youtube.com/watch?v=g85K0lBHrDw	2
	из города	Комбинированная	Информационно-реце птивный.	Зимнее чаепитие. Сколько нужно снега и дров life.mosmetod.ru/index.php/item/zi	Защита проекта
	из города		Репродуктивный.	mnee-chaepitie-skolko-nuzhno-	проскта
			Частично-поисковый.	snega-i-drovинформационной инфраструктуры	
			Практический	Российской Федерации»	
	Кейс 3.	Комбинированная	Репродуктивный.	Что такое электрический ток https://meanders.ru/tok.shtm1	Защита
	Электроснабжение		Частично-поисковый.	Монтаж электропроводки	проекта
	частного		Практический	своими руками: как грамотно выполнить	
	домовладения			электромонтажные работы	

			http://sovetingenera.com/elektrika/provodka/montazh- elektroprovodki-svoimi-rukami.html http://sovet-ingenera.com/elektrika/provodka/montazh- elektroprovodki-svoimi-rukami.html	
Кейс 4. Интеграция источников энергоснабжения в городскую среду	Комбинированная	Репродуктивный. Частично-поисковый. Практический	Как работает и из чего состоит система Умный дом https://smartme.pro/sistema-umnyj-dom/ «Умный» дом на платформе Arduino - как сделать своими руками? Сайт Arduino для начинающих https://umniedoma.ru/umnyj-dom-na-platforme-arduino-kak-sdelat-svoimi-rukami// Сайт Все проекты с Arduino http://arduino-projects.ru/	Защита проекта
Кейс 5. Подбор оптимальных параметров работы ВТЭ	Комбинированная	Информационно-реце птивный. Частично-поисковый. Практический	Мощность электрического тока. Ютуб канал «Физика ОГЭ» https://www.youtube.com/watch?v=SzU8fOkxbQA Как измерить мощность мультиметром. Ютуб канал «OnigmaTV» https://www.youtube.com/watch?v=Z4v3N2xVDd4	Защита проекта

КАДРОВОЕ ОБЕСПЕЧЕНИЕ

Преподавание данной программы могут осуществлять педагогические работники, владеющие набором профессиональных навыков в области альтернативной энергетики, при наличии необходимых компетенций и уровня профильной подготовки.

ОПИСАНИЕ МАТЕРИАЛЬНО - ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО КУРСУ

Для реализации курса «Энерджиквантум» помещение должно соответствовать следующим характеристикам:

- аудитории, оборудованы интерактивной доской, проектором, ноутбуком.
- каждый обучающийся выполняет практические работы за отдельным компьютером с сохранением результатов в облачном хранилище.

УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

1. Перечень литературы, необходимой для освоения программы

- 1.1. Перечень литературы, использованной при написании программы
- 1. Энерджиквантум тулкит. Ларькин Андрей Владимирович: Базовая серия «Методический инструментарий тьютора». М.: Фонд новых форм развития образования. 2017.- 120 с.
- 2. Надежность систем теплоснабжения городов и предприятий легкой промышленности. Учебник. Москва: Огни, 2019. 448 с.
- 3. Демидова-Панферова, Р. М. Задачи и примеры расчетов по электроизмерительной технике / Р.М. Демидова-Панферова, В.Н. Малиновский, Ю.С. Солодов. М.: Энергоатомиздат, 2023. 192 с.
 - 1.2. Перечень литературы, рекомендованной обучающимся
- 1. Демидова-Панферова, Р. М. Задачи и примеры расчетов по электроизмерительной технике / Р.М. Демидова-Панферова, В.Н. Малиновский, Ю.С. Солодов. М.: Энергоатомиздат, 2023. 192 с.
- 2. Сибикин, Ю. Д. Электроснабжение промышленных предприятий и установок. Учебное пособие / Ю.Д. Сибикин, М.Ю. Сибикин, В.А. Яшков. М.: Форум, Инфра-М, 2022. 368 с.
 - 1.3. Перечень литературы, рекомендованной родителям
- 1. Хорольский, В. Я. Надежность электроснабжения / В.Я. Хорольский, М.А. Таранов. - М.: Дрофа, 2019. - 128 с.
 - 1.4. Перечень раздаточного материала
 - 1. Тематические презентации.
 - 2. Информационное обеспечение

Программное обеспечение:

Операционная система (Windows, Linux, macOS). Офисное программное обеспечение.

- 2.1. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения программы
 - 1. https://olimp.edsoo.ru
 - 2. https://edu.skysmart.ru
 - 3. https://www.yaklass.ru/
 - 4. https://uchi.ru
 - 5. https://ypok.pd
 - 6. https://education.yandex.ru
 - 7. https://resh.edu.ru